Market Overview
AI
In Hospitality Market was valued at USD 90 million in 2022 and is estimated to
reach a value of USD 8,120 million by 2033 with a CAGR of 60% during the
forecast period. The AI in hotel and hospitality refers to the adoption and
integration of artificial intelligence (AI) technologies in various aspects of
the hotel and hospitality industry.
These
technologies aim to enhance guest experiences, streamline operations, improve
efficiency, and personalize services. AI in this context typically encompasses
machine learning, natural language processing, computer vision, and other AI
techniques.
Market Scope
Report Attributes |
Description |
Market Size in 2023 |
USD
90 Million |
Market Forecast in 2033 |
USD
8,120 Million |
CAGR % 2023-2033 |
60% |
Base Year |
2022 |
Historic Data |
2016-2021 |
Forecast Period |
2023-2033 |
Report USP |
company
share, company heatmap, company production capacity, growth factors and more |
Growth Drivers |
Growing
demand on providing enhanced guest
experience Integration of dynamic pricing model within the industry Increased
reliance on real time responses from customers. |
Segments Covered |
Hotel Type, Services, Hotel Size and Application |
Regional Scope |
North
America, Europe, APAC, South America and Middle East and Africa |
Country Scope |
U.S.;
Canada; U.K.; Germany; France; Italy; Spain; Benelux; Nordic Countries;
Russia; China; India; Japan; South Korea; Australia; Indonesia; Thailand;
Mexico; Brazil; Argentina; Saudi Arabia; UAE; Egypt; South Africa; Nigeria |
Key Companies |
IBM
Corporation, Microsoft Corporation, Amazon Web Services, Inc., Oracle
Corporation, Google LLC, Intel Corporation, NVIDIA Corporation, Alibaba Group
Holding Limited, Cisco Systems, Inc., HCL Technologies Limited, Amadeus IT
Group SA, Infor, Inc., Salesforce.com, Inc., Huawei Technologies Co., Ltd.,
NEC Corporation. |
Before
we move forward with the various aspects of AI in hospitality market, let us
understand the correlation between the use of AI and various hospitality
performance metrics, such as guest satisfaction, revenue, and efficiency. We
will portray this by a straight comparison, pre and post analysis of AI in
hospitality industry
For
this we have done a survey of 100 samples that primarily included both consumer
and hospitality industry management. Various questions were included in the
survey covering booking, communication, wait times, automating task and others.
The pre and post analysis gave us a positive correlated side of AI technology
such as chatbots, voice controlled devices, revenue management and dynamic
pricing and others.
Below
table depicts the improved results, that strong shows that AI is set to create
a colossal revolution within the hospitality industry and create a moneybag
scenario for the investors
Factors |
Pre Adoption
Rating (Out of 10) |
Post Adoption
Rating (Out of 10) |
Guest
Satisfaction |
2.5 |
8.7 |
Revenue Increase |
1.8 |
7 |
Efficiency |
1.1 |
6 |
Source: We Market Research
Similar Results Done By Other Survey
A
study by Cornell University found that hotels that use AI dynamic pricing have
higher revenue than hotels that do not use AI dynamic pricing. The study found
that AI dynamic pricing can help hotels to increase revenue by up to 15%. Thus
it is clear that autonomous technology possess a great power in revolutionizing
the hospitality industry, thereby creating a smoother base for the AI in
hospitality market.
Another
study by the University of Las Vegas found that hotels that use AI to
personalize the guest experience have higher revenue and guest satisfaction
scores than hotels that do not use AI. The study found that AI personalization
can help hotels to increase revenue by up to 10%.
Thus based on statistical results it is clear that AI in hospitality industry has a correlation factor of 0.92% on above mentioned dimensions.
Market Dynamics
Growing demand for the integration of dynamic pricing model within the hospitality sector has created a lucrative scope for hotel owners, which further has created a strong base for AI in hospitality market. The hospitality sector is witnessing a growing demand for the integration of dynamic pricing models, and this trend is fundamentally reshaping the way hotels and accommodations operate.
One of
the primary drivers behind this demand is the need to maximize revenue in an
increasingly competitive market. Dynamic pricing empowers hotels to adapt to
ever-changing market conditions by adjusting room rates in real-time. For
instance, during periods of high demand, such as holidays or major events,
hotels can raise their prices to capture the increased willingness of travelers
to pay more for accommodation. Conversely, during low-demand seasons, dynamic
pricing allows hotels to offer competitive rates to attract cost-conscious guests.
This
flexibility in pricing strategies not only helps hotels optimize revenue but
also enhances their competitiveness. By staying agile and responsive to market
fluctuations, hotels can outperform their competitors in terms of revenue
generation and occupancy rates. Moreover, dynamic pricing enables hotels to
align their pricing with demand patterns, ensuring that rooms are priced at
their maximum potential without overcharging or underpricing has also
contributed in creating a linear growth trajectory for AI in hospitality
market.
Another
critical factor driving the adoption of dynamic pricing is the advancement of
technology. AI-powered algorithms and data analytics have made it possible to
analyze a multitude of variables, such as historical booking data, competitor
rates, and even local events, in real-time. This data-driven approach allows
hotels to make informed pricing decisions that were previously impossible to
execute manually.
From the guest's perspective, dynamic pricing also offers benefits. Travelers can potentially find more affordable rates during off-peak periods, making travel more accessible and budget-friendly. Overall, the integration of dynamic pricing models is transforming the hospitality sector, enabling hotels to optimize revenue while providing guests with greater pricing transparency and flexibility.
As this trend continues to evolve, it is likely to become an integral part of the modern hospitality industry, benefiting both providers and consumers alike.
Hotel Type Analysis
Based
on hotel type, AI in hospitality market is segmented into Luxury Hotels and Resorts,
Mid-scale and Budget Hotels, Boutique and Independent Hotels and Chain and
Group Hotels. In the current scenario, as the market is in early stage luxury
hotels and resorts dominate the market with a share of 50.1% in 2022, owing to the
availability of higher budget for technology integration and customer
satisfaction.
The
integration of AI (Artificial Intelligence) in luxury hotels and resorts is
ushering in a new era of personalized, efficient, and memorable guest
experiences. Several notable trends highlight the direction in which AI is
shaping the luxury hospitality sector.
One prominent trend is the use of AI-powered chatbots and virtual assistants. These intelligent systems offer guests 24/7 concierge services, addressing inquiries, providing recommendations, and handling requests in real-time.
By leveraging
natural language processing and machine learning, AI chatbots can engage with
guests in a conversational manner, ensuring a high level of service and
convenience, thus propelling the growth of AI in hospitality market.
Moreover,
AI-enhanced personalization is redefining luxury. Hotels are utilizing AI to
create guest profiles that include preferences, past stays, and behaviors. With
this data, AI algorithms can curate customized experiences, from room settings
to dining suggestions, spa treatments, and recreational activities. This level
of personalization enhances guest satisfaction and loyalty.
AI is also streamlining check-in and check-out processes. Luxury hotels are implementing contactless solutions that enable guests to use their smartphones for everything from room access to ordering room service. Facial recognition technology is even being deployed for frictionless entry and exit, enhancing security and convenience.
Application Analysis
AI in hospitality market is analyzed across various applications such as Guest Experience Enhancement, Operational Efficiency, Revenue Management, Safety and Security and Sustainability and Energy Management. Guest experience enhancement holds an active market share of 46.18% in 2022, owing to immense focus on hyper-personalization.
Hyper-personalization is a transformative trend within
the realm of AI (Artificial Intelligence) in hospitality, redefining how hotels
and accommodations interact with their guests. At its core,
hyper-personalization harnesses the power of AI to tailor every aspect of a
guest's stay to their individual preferences and needs.
Imagine checking into a hotel, and from the moment you arrive, everything feels as if it was designed just for you. This is the essence of hyper-personalization. AI algorithms analyze an array of data points, including past stays, guest profiles, preferences, and even real-time inputs. Armed with this information, hotels can curate experiences that go beyond mere accommodation.
Regional Analysis
Based on the geographic scope, AI in hospitality market is segmented into North America, Europe, APAC, South America and MEA. APAC holds a lucrative scope within the market along with an active share of 25.10% in 2022.
Multilingual AI
assistants have emerged as a pivotal trend in the hospitality industry across
the Asia-Pacific (APAC) region. These AI-driven virtual concierges are transforming
the way hotels interact with guests, providing seamless and personalized
services tailored to the linguistic diversity of the region.
APAC
is known for its rich tapestry of languages and cultures, making it a unique
challenge and opportunity for the hospitality sector. Multilingual AI
assistants address this challenge by offering real-time communication
capabilities in multiple languages. Here's a detailed explanation of their
significance:
Catering to Diverse Guests:
APAC attracts travelers from around the world, and each guest may speak a
different language. Multilingual AI assistants ensure that guests feel at home
by providing information, assistance, and recommendations in their preferred
language. Whether it's Mandarin, Japanese, Korean, Hindi, or English, these
AI-powered systems bridge language gaps effortlessly.
Local Insights:
These AI systems are equipped with information about local culture, customs,
and events, enriching the guest experience with insights that go beyond
language. Guests can learn about local traditions, festivals, and dining
etiquette, contributing to a deeper understanding of the destination.
With such key advantages offered APAC is set to revolutionize the overall AI in hospitality market, and create a lucrative moneybag scope from both demand and supply side.
Competitive Analysis
Some
of the major companies operating within the AI in hospitality market are : IBM
Corporation, Microsoft Corporation, Amazon Web Services, Inc., Oracle
Corporation, Google LLC, Intel Corporation, NVIDIA Corporation, Alibaba Group
Holding Limited, Cisco Systems, Inc., HCL Technologies Limited, Amadeus IT
Group SA, Infor, Inc., Salesforce.com, Inc., Huawei Technologies Co., Ltd., NEC
Corporation, and Amadeus IT Group.
Amadeus leverages AI to enable hyper-personalization of the guest experience. Through data analysis and machine learning algorithms, the company tailors recommendations and services to individual guest preferences.
This includes
personalized room amenities, dining suggestions, and leisure activities, all
aimed at creating memorable stays for guests. This allows to create strong base
for the overall AI in hospitality market.
Amadeus IT Group, IBM, and Microsoft combined hold a market share of more than 40.15% in 2022, thereby mandating other player to look out for various use case in hospitality sector, thereby creating a good hold in AI in hospitality market.
Market Segmentation
By Application
·
Guest Experience
Enhancement
·
Operational Efficiency
·
Revenue Management
·
Safety and Security
· Sustainability and Energy Management
By Services
·
Front-End Services
·
Back-End Services
·
Security and Safety
Services
By Hotel Type
·
Luxury Hotels and Resorts
·
Mid-scale and Budget Hotels
·
Boutique and Independent
Hotels
·
Chain and Group Hotels
By Hotel Size
·
Small and Medium-sized
Hotels
·
Large Hotels and Hotel
Chains
1.      Global AI in Hospitality Market Introduction and Market Overview
1.1.  Â
Objectives of the Study
1.2.  Â
Global AI in Hospitality Market
Scope and Market Estimation
1.2.1.Global AI
in Hospitality Overall Market Size, Revenue (US$ Mn), Market CAGR (%), Market
forecast (2023 - 2033)
1.2.2.Global AI
in Hospitality Market Revenue Share (%) and Growth Rate (Y-o-Y) from 2019 - 2033
1.3.  Â
Market Segmentation
1.3.1.Hotel Type
of Global AI in Hospitality Market
1.3.2.Hotel
Size of Global AI in Hospitality Market
1.3.3.Application
of Global AI in Hospitality Market
1.3.4.Services
of Global AI in Hospitality Market
1.3.5.Region
of Global AI in Hospitality Market
2.      Executive Summary
3.      Market Factor Analysis
3.1.  Global AI in Hospitality
Market Application Trends under COVID-19 Outbreak
3.1.1.Global
COVID-19 Status Overview
3.1.2.Influence
of COVID-19 Outbreak on Global AI in Hospitality Market Application Development
3.2.  Market Dynamics
3.2.1.Drivers
3.2.2.Limitations
3.2.3.Opportunities
3.2.4.Impact
Analysis of Drivers and Restraints
3.3.  Value Chain/ Ecosystem
Analysis
3.3.1.Manufacturers
/ Vendors
3.3.2.Distributors
3.3.3.Buyers /
End-users
3.3.4.Forward
Integration & Backward Integration of Key Stakeholders
3.4.  Global AI in Hospitality
Market - Pricing Trends Analysis & Average Selling Prices (ASPs)
3.5.  Porter’s Five Forces
Analysis
3.5.1.Bargaining
Power of Suppliers
3.5.2.Bargaining
Power of Buyers
3.5.3.Threat
of Substitutes
3.5.4.Threat
of New Entrants
3.5.5.Competitive
Rivalry
3.6.  PEST Analysis
3.6.1.Political
Factors
3.6.2.Economic
Factors
3.6.3.Social
Factors
3.6.4.Technological
Factors
3.7.  Impact of Russia Ukraine
War on AI in Hospitality Market
3.8.  Impact of Economic
Downturn on AI in Hospitality Market
3.9.    Market Investment
Opportunity Analysis (Top Investment Pockets), By Segments & By Regions
4.      Global AI in Hospitality
Market Estimates & Forecast Trend Analysis, by Hotel
type
4.1.  Â
Global AI in Hospitality Market
Revenue (US$ Mn) Estimates and Forecasts, by Hotel type, 2019 to 2033
4.1.1.   Luxury Hotels and Resorts
4.1.2.Mid-scale and Budget Hotels
4.1.3.Boutique and Independent Hotels
4.1.4.Chain and Group Hotels   Â
5.      Global AI in Hospitality
Market Estimates & Forecast Trend Analysis, by Application
5.1.  Â
Global AI in Hospitality Market
Revenue (US$ Mn) Estimates and Forecasts, by Application, 2019 to 2033
5.1.1.Guest
Experience Enhancement
5.1.2.Operational
Efficiency
5.1.3.Revenue
Management
5.1.4.Safety
and Security
5.1.5.Sustainability
and Energy Management
6.      Global AI in Hospitality
Market Estimates & Forecast Trend Analysis, by Services
6.1.  Â
Global AI in Hospitality Market
Revenue (US$ Mn) and Volume (Tons) Estimates and Forecasts, by Services, 2019 to 2033
6.1.1.    Front-End
Services
6.1.2.Back-End
Services
6.1.3.Security
and Safety Services
7.      Global AI in Hospitality
Market Estimates & Forecast Trend Analysis, by
Region
7.1.  Â
Global AI in Hospitality Market
Revenue (US$ Mn) and Volume (Tons) Estimates and Forecasts, by Region, 2019 to 2033
7.1.1.North
America
7.1.2.Europe
7.1.3.Asia
Pacific
7.1.4.Middle East & Africa
7.1.5.South
America
8.      North America AI in Hospitality Market:
Estimates & Forecast Trend Analysis
8.1.   North America AI in Hospitality Market Assessments & Key
Findings
8.1.1.AI in
Hospitality Market Introduction
8.1.2.AI in
Hospitality Market Size Estimates and Forecast (US$ Million) (2019 – 2033)
8.1.2.1. Â
By Hotel Type
8.1.2.2. Â
By Hotel Size
8.1.2.3. Â
By Application
8.1.2.4. Â
By Service
8.1.2.5. Â
By Country
8.1.2.5.1.   Â
The U.S.
8.1.2.5.2.   Â
Canada
8.1.2.5.3.   Â
Mexico
9.      Europe AI in Hospitality Market:
Estimates & Forecast Trend Analysis
9.1.  Â
Europe AI in Hospitality Market
Assessments & Key Findings
9.1.1.AI in
Hospitality Market Introduction
9.1.2.AI in
Hospitality Market Size Estimates and Forecast (US$ Million) (2019 – 2033)
9.1.2.1. Â
By Hotel Type
9.1.2.2. Â
By Hotel Size
9.1.2.3. Â
By Application
9.1.2.4. Â
By Service
9.1.2.5.      Â
By Country
9.1.2.5.1.   Â
Italy
9.1.2.5.2.   Â
Germany
9.1.2.5.3.   Â
U.K.
9.1.2.5.4.   Â
France
9.1.2.5.5.   Â
Spain
9.1.2.5.6.   Â
Rest of Europe
10.  Asia Pacific AI in Hospitality Market:
Estimates & Forecast Trend Analysis
10.1. Asia Pacific Market Assessments & Key Findings
10.1.1.  Â
AI in Hospitality Market
Introduction
10.1.2.  Â
AI in Hospitality Market Size and
Volume Estimates and Forecast (US$ Million) (2019 – 2033)
10.1.2.1.  Â
By Hotel Type
10.1.2.2.  Â
By Hotel Size
10.1.2.3.  Â
By Application
10.1.2.4.  Â
By Service
10.1.2.5.  Â
By Country
10.1.2.5.1. China
10.1.2.5.2. Japan
10.1.2.5.3. India
10.1.2.5.4. Australia
10.1.2.5.5. South Korea
10.1.2.5.6. ASEAN
10.1.2.5.7. Rest of Asia Pacific
11.  Middle East & Africa AI in Hospitality Market: Estimates & Forecast Trend Analysis
11.1. Middle East & Africa Market Assessments & Key Findings
11.1.1. Â
AI in Hospitality Market
Introduction
11.1.2. Â
AI in Hospitality Market Size and
Volume Estimates and Forecast (US$ Million) (2019 – 2033)
11.1.2.1.  Â
By Hotel Type
11.1.2.2.  Â
By Hotel Size
11.1.2.3.  Â
By Application
11.1.2.4.  Â
By Service
11.1.2.5.  Â
By Country
11.1.2.5.1. U.A.E.
11.1.2.5.2. Saudi Arabia
11.1.2.5.3. Egypt
11.1.2.5.4. South Africa
11.1.2.5.5. Rest of Middle East & Africa
12.  South America AI in Hospitality Market:
Estimates & Forecast Trend Analysis
12.1. South America Market Assessments & Key Findings
12.1.1. Â
AI in Hospitality Market
Introduction
12.1.2. Â
AI in Hospitality Market Size and
Volume Estimates and Forecast (US$ Million) (2019 – 2033)
12.1.2.1.  Â
By Hotel Type
12.1.2.2.  Â
By Hotel Size
12.1.2.3.  Â
By Application
12.1.2.4.  Â
By Service
12.1.2.5.  Â
By Country
12.1.2.5.1. Brazil
12.1.2.5.2. Argentina
12.1.2.5.3. Colombia
12.1.2.5.4. Rest of South America
13. Â
Competition Landscape
13.1. AI in Hospitality Market Competition Matrix & Benchmarking, by
Leading Players / Innovators / Emerging Players / New Entrants
13.2. AI in Hospitality Market Competition White Space Analysis, By End-user
13.3. AI in Hospitality Market Competition Regional Intensity Map
Analysis, By Geographies Served
13.4. AI in Hospitality Market Concentration & Company Market Shares
(%) Analysis, 2022
14. Â
Company Profiles
14.1.IBM Corporation
14.1.1.  Â
Company Overview & Key
Stats
14.1.2.  Â
Financial Performance &
KPIs
14.1.3.  Â
Product Portfolio
14.1.4.  Â
Business Strategy & Recent
Developments
* Similar details would be provided for all the players
mentioned belowÂ
14.2.Microsoft Corporation
14.3.Amazon Web Services, Inc.
14.4.Oracle Corporation
14.5.Google LLC
14.6.Intel Corporation
14.7.NVIDIA Corporation
14.8.Alibaba Group Holding Limited
14.9.Cisco Systems, Inc.
14.10. Â
HCL
Technologies Limited
14.11. Â
Amadeus IT
Group SA
14.12. Â
Infor,
Inc.
14.13. Â
Salesforce.com,
Inc.
14.14. Â
Huawei
Technologies Co., Ltd.
14.15. Â
NEC
Corporation
14.16. Â
Amadeus IT
Group Â
14.17. Â
 Others**
15. Â
Research Methodology
15.1.    Â
External Power
Outputs / Databases
15.2.    Â
Internal
Proprietary Database
15.3.    Â
Primary
Research
15.4.    Â
Secondary
Research
15.5.    Â
Assumptions
15.6.    Â
Limitations
15.7.    Â
Report
FAQs
16.  Research Findings & Conclusion
We Market Research senior executive is assigned to each consulting engagement and works closely with the project team to deliver as per the clients expectations.
Market Research Process
We Market Research monitors 3 important attributes during the QA process- Cost, Schedule & Quality. We believe them as a critical benchmark in achieving a project’s success.
One of the key manufacturers of automotive had plans to invest in electric utility vehicles. The electric cars and associated markets being a of evolving nature, the automotive client approached We Market Research for a detailed insight on the market forecasts. The client specifically asked for competitive analysis, regulatory framework, regional prospects studied under the influence of drivers, challenges, opportunities, and pricing in terms of revenue and sales (million units).
The overall study was executed in three stages, intending to help the client meet its objective of precisely understanding the entire market before deciding on an investment. At first, secondary research was conducted considering political, economic, social, and technological parameters to get a gist of the various aspects of the market. This stage of the study concluded with the derivation of drivers, opportunities, and challenges. It also laid substantial emphasis on understanding and collecting data not only on a global scale but also on the regional and country levels. Data Extraction through Primary Research
The second stage involved primary research in which several market players and automotive parts suppliers were contacted to study their viewpoint concerning the development of their market and production capacity, clientele, and product line. This stage concluded in a brief understanding of the competitive ecosystem and also glanced through the strategies and pricing of the companies profiled.
In the final stage of the study, market forecasts for the electric utility were derived using multiple market engineering approaches. This data helped the client to get an overview of the market and accelerate the process of investment.
Business process outsourcing, being one of the lucrative markets from both supply- and demand- side, has appealed to various companies. One of the prominent corporations based out of Japan approached us with their requirements regarding the scope of the procurement outsourcing market for around 50 countries. Additionally, the client also sought key players operating in the market and their revenue breakdown in terms of region and application.
Business Solution
An exhaustive market study was conducted based on primary and secondary research that involved factors such as labor costs in various countries, skilled and technical labors, manufacturing scenario, and their respective contributions in the global GDP. A comparative study of the market was conducted from both supply- and demand side, with the supply-side comprising of notable companies, such as GEP, Accenture, and others, that provide these services. On the other hand, large manufacturing companies from them demand-side were considered that opt for these services.
Conclusion
The report aided the client in understanding the market trends, including country-level business scenarios, consumer behavior, and trends in 50 countries. The report also provided financial insights of crucial players and detailed market estimations and forecasts till 2033.
AI in hospitality market was valued at USD 90 million in 2022 and is estimated to grow at a CAGR of 60%.
Major companies operating within the AI in hospitality market are IBM Corporation, Microsoft Corporation, Amazon Web Services, Inc., Oracle Corporation, Google LLC, Intel Corporation, NVIDIA Corporation, Alibaba Group Holding Limited, Cisco Systems, Inc., HCL Technologies Limited, Amadeus IT Group SA, Infor, Inc., Salesforce.com, Inc., Huawei Technologies Co., Ltd., NEC Corporation, and Amadeus IT Group.
Some of key technologies that are adopted in major ratio are AI chatbots, dynamic pricing model, hypersonaliztion and others.
North America dominates the market with an active share of 34.16%, while APAC is estimated to grow at a higher CAGR of 70%.
Only Three Thousand Four Hundred Ninety Nine US dollar
Only Four Thousand Four Hundred Ninety Nine US dollar
Only Five Thousand Four Hundred Ninety Nine US dollar