report-image

Artificial Intelligence In Fashion Market Analysis By Component (Software, Services), By Deployment Mode (Cloud, On-Premises), By Application (Product Design and Development, Supply Chain Management, Customer Service and Experience) & Forecast

  • PUBLISHED ON
  • NO OF PAGES
  • 266
  • CATEGORY
  • Retails & Consumer

Market Overview:

The global artificial intelligence in fashion market was valued at USD 700 million in 2022 and is estimated to reach a value of USD 6 billion by 2033 with a CAGR of 35% during the forecast period. Artificial Intelligence (AI) has rapidly transformed the fashion industry in recent years. The AI in fashion market is expected to grow significantly in the coming years, driven by the increasing demand for personalized shopping experiences, as well as the need for more sustainable and efficient supply chains. AI in fashion refers to the use of machine learning algorithms and other AI technologies to improve various aspects of the fashion industry, including design, production, supply chain management, and customer experience.

Report Scope

Report Attributes

Description

Market Size in 2022

USD 700 Million

Market Forecast in 2033

USD 6,000 Million

CAGR % 2023-2033

35%

Base Year

2022

Historic Data

2019-2021

Forecast Period

2023-2033

Report USP

Country and Regional trends, company  market share by countries, key investment analysis

Segments Covered

Component, deployment  and application

Regional Scope

North America, Europe, APAC, South America and Middle East and Africa

Country Scope

U.S.; Canada; U.K.; Germany; France; Italy; Spain; Benelux; Nordic Countries; Russia; China; India; Japan; South Korea; Australia; Indonesia; Thailand; Mexico; Brazil; Argentina; Saudi Arabia; UAE; Egypt; South Africa; Nigeria

Key Companies

Adobe Inc., Amazon Web Services, Inc., Catchoom Technologies S.L., Facebook, Inc., Huawei Technologies Co. Ltd., IBM Corporation, Intel Corporation, Microsoft Corporation, Oracle Corporation, SAP SE, Sentient Technologies Holdings Limited, Syte.ai Ltd., ViSenze Pte Ltd., Wide Eyes Technologies, Ximilar s.r.o.,


One of the key advantages of AI in fashion is its ability to provide personalized recommendations and improve the customer experience. AI-powered chatbots, for example, can provide customers with personalized recommendations based on their preferences and past purchases. This not only improves the customer experience but also helps retailers to increase sales and improve customer loyalty. Another advantage of AI in fashion is its ability to optimize supply chain management. AI can help retailers to better forecast demand, manage inventory, and reduce waste, leading to more efficient and sustainable supply chains. AI can also help retailers to identify and address quality control issues early on, minimizing product returns and improving customer satisfaction.

AI is being used in various ways in the fashion industry. One of the most common uses is in product recommendation systems, which use machine learning algorithms to analyze customer data and provide personalized product recommendations. AI is also being used in fashion design. For example, designers can use AI-powered tools to generate new design ideas or create customized designs for individual customers. AI can also be used to optimize the production process, by analyzing data to identify the most efficient production methods and reducing waste.

Market Dynamics

The increasing demand for personalized shopping experiences and efficient supply chain management is driving the adoption of AI in the fashion industry.

The fashion industry is becoming increasingly competitive, with retailers looking for new ways to provide personalized shopping experiences and optimize their supply chains. This is where AI comes in, as it offers various benefits that can help retailers to meet these goals. One of the key driving factors for the adoption of AI in the fashion industry is the need for more personalized shopping experiences. Customers are looking for more customized and relevant product recommendations, and AI-powered recommendation engines can provide this. By analyzing customer data and preferences, AI algorithms can provide personalized product recommendations and styling advice, leading to increased customer satisfaction and loyalty.

Another driving factor is the need for more efficient and sustainable supply chains. Retailers are looking for ways to reduce waste, optimize inventory management, and improve the overall efficiency of their supply chains. AI-powered predictive analytics can help with this, by providing insights into demand forecasting, inventory optimization, and production efficiency. This can lead to more efficient and sustainable supply chains, with reduced waste and improved sustainability. In addition, AI can help fashion retailers to improve their product design and development processes. AI-powered tools can generate new design ideas, create customized designs for individual customers, and optimize the production process. By analyzing data on customer preferences and market trends, AI algorithms can help designers to create more innovative and successful products.


Artificial intelligence (AI) has significant potential for product design and development in the fashion industry. Here are some ways in which AI is being used in this area:

Design Assistance: AI can assist designers in creating new designs by analyzing data on past trends, customer preferences, and other factors. This can help designers make informed decisions about which styles, colors, and materials are likely to be successful.

Pattern Making: AI can be used to create and modify patterns quickly and efficiently, saving time and reducing errors. This can help designers bring their ideas to life more quickly and accurately.

Virtual Prototyping: With AI, designers can create virtual prototypes of their designs, allowing them to see how the garment will look and fit before creating a physical sample. This can save time and reduce costs associated with creating multiple physical samples.

Material Selection: AI can analyze data on the properties of different materials and recommend the best materials for a particular garment based on factors such as durability, comfort, and cost.


Sizing and Fit: AI can analyze data on customer body measurements and recommend the best sizing and fit for a particular garment. This can help reduce the number of returns and improve customer satisfaction.

Overall, the use of AI in product design and development in the fashion industry has the potential to improve efficiency, reduce costs, and increase customer satisfaction.

Regional Insights:

North America is expected to dominate the AI in fashion market due to the high adoption of AI technologies in the fashion industry in this region. The United States is one of the largest markets for AI technology in the world, and the fashion industry is no exception. Major fashion brands and retailers in the US are increasingly adopting AI-powered solutions to provide personalized shopping experiences, optimize their supply chains, and improve their product design and development processes. Europe is also expected to be a significant market for AI in fashion, driven by the presence of major fashion brands and retailers in the region, as well as a high level of technological advancement. The Asia Pacific region is also expected to grow rapidly, with countries such as China and Japan investing heavily in AI technologies for the fashion industry.


 

Europe Trends

Personalization: Personalization has been a growing trend in the fashion industry, and AI can help to make this more efficient and effective. By analyzing customer data, AI can help retailers create personalized recommendations for each individual customer.

Sustainability: There is increasing interest in using AI to help address sustainability issues in the fashion industry, such as reducing waste and minimizing the environmental impact of production. For example, AI can be used to optimize supply chain efficiency and reduce overproduction.

Visual Search: AI-powered visual search technology is becoming more popular in the fashion industry, allowing customers to search for products using images instead of keywords. This can make the shopping experience more intuitive and user-friendly.

Virtual Try-On: With the ongoing pandemic, virtual try-on technology has become more important than ever before. AI-powered virtual try-on technology is becoming increasingly sophisticated, allowing customers to see how garments will look on their body type and in different settings.

Chatbots: AI-powered chatbots are being used more frequently in the fashion industry to assist customers with questions and provide personalized recommendations. This can improve the customer experience and reduce the workload of customer service teams.

Overall, the use of AI in the fashion industry in Europe is growing rapidly, with many retailers and brands experimenting with different applications of this technology.


Impact of COVID-19 on the global Artificial Intelligence In Fashion Market:

The COVID-19 pandemic has had a significant impact on the AI in fashion market, as it has on many other industries. The pandemic has disrupted supply chains across the fashion industry, leading to delays and disruptions in manufacturing and distribution. This has led to increased interest in AI-powered supply chain management solutions, which can help to optimize inventory management and improve efficiency. With physical stores closed or operating at reduced capacity, many consumers have shifted to online shopping. This has led to increased demand for AI-powered product recommendation engines and personalized shopping experiences, which can help retailers to provide a more engaging and customized online shopping experience. Many fashion brands and retailers have been forced to implement cost-cutting measures due to the pandemic, leading to increased interest in AI-powered solutions that can help to reduce costs and improve efficiency.

Overall, the impact of COVID-19 on the AI in fashion market has been mixed. While the pandemic has created challenges for the industry, it has also led to increased interest in AI-powered solutions that can help to address these challenges and improve efficiency and sustainability in the long term.


Company Profiles:

• Adobe Inc.

• Amazon Web Services, Inc.

• Catchoom Technologies S.L.

• Facebook, Inc.

• Huawei Technologies Co. Ltd.

• IBM Corporation

• Intel Corporation

• Microsoft Corporation

• Oracle Corporation

• SAP SE

• Sentient Technologies Holdings Limited

• Syte.ai Ltd.

• ViSenze Pte Ltd.

• Wide Eyes Technologies

• Ximilar s.r.o.


Company Strategy

IBM Corporation: IBM has developed several AI-based strategies for the fashion industry. Here are a few examples:

Watson Trend: IBM's Watson Trend is an AI-powered tool that helps retailers predict consumer trends by analyzing data from social media and online searches. It uses natural language processing and machine learning algorithms to identify emerging trends and provide retailers with insights into what consumers are interested in buying.

Fashion Advisor: IBM's Fashion Advisor is an AI-powered virtual assistant that helps customers find the right outfit for any occasion. It uses natural language processing and image recognition technology to understand the customer's preferences and suggest outfits that match their style and body type.

Visual Recognition: IBM's Visual Recognition technology can be used to analyze images and identify specific patterns and styles. This can be used by retailers to quickly identify emerging trends and provide personalized recommendations to customers based on their style preferences.

Supply Chain Optimization: IBM's AI-powered supply chain optimization tools can help fashion retailers streamline their supply chain processes, reduce waste, and improve efficiency. This includes using predictive analytics to optimize inventory levels and using machine learning algorithms to identify potential supply chain disruptions before they occur.

Overall, IBM's AI-based strategies for the fashion industry are focused on helping retailers improve their customer experience, increase efficiency, and stay ahead of emerging trends.

Why to buy this Report?

Market research: The report provides valuable insights into market trends, growth opportunities, and competitive landscapes. By reading a technology report, businesses and investors can gain a better understanding of the market they are operating in or considering entering, and make more informed decisions based on data and analysis.

Competitive analysis: The report reports provide detailed information on competitors' strengths, weaknesses, and strategies, which can help businesses identify potential threats and opportunities in the market.

Innovation: The report provides insights into emerging technologies and trends, which can help businesses stay up-to-date with the latest developments and make informed decisions about where to invest their resources.

Due diligence: The report can be used by investors and acquirers as part of their due diligence process when considering investing in or acquiring a technology company. These reports can provide valuable information on the company's financials, technology, market position, and other key factors.

Segmentation:

By Component:

• Software

• Services


By Deployment Mode:

• Cloud

• On-Premises


By Application:

• Product Design and Development

• Supply Chain Management

• Customer Service and Experience


North America

·         U.S.

·         Canada

·         Mexico

Europe

·         Germany

·         U.K.

·         France

·         Italy

·         Spain

·         Russia

·         Rest of Europe

Asia Pacific

·         China

·         Japan

·         India

·         Australia

·         Korea

·         Rest of Asia pacific

South America

·         Brazil

·         Argentina

·         Colombia

·         Rest of South America

Middle East & Africa

·         UAE

·         Saudi Arabia

·         Egypt

·         Oman

·         Kuwait

·         South Africa

·         Rest of MEA


Quality Assurance Process

  1. We Market Research’s Quality Assurance program strives to deliver superior value to our clients.

We Market Research senior executive is assigned to each consulting engagement and works closely with the project team to deliver as per the clients expectations.

Market Research Process




We Market Research monitors 3 important attributes during the QA process- Cost, Schedule & Quality. We believe them as a critical benchmark in achieving a project’s success.

To mitigate risks that can impact project success, we deploy the follow project delivery best practices:
  • Project kickoff meeting with client
  • Conduct frequent client communications
  • Form project steering committee
  • Assign a senior SR executive as QA Executive
  • Conduct internal editorial & quality reviews of project deliverables
  • Certify project staff in SR methodologies & standards
  • Monitor client satisfaction
  • Monitor realized value post-project

Case Study- Automotive Sector

One of the key manufacturers of automotive had plans to invest in electric utility vehicles. The electric cars and associated markets being a of evolving nature, the automotive client approached We Market Research for a detailed insight on the market forecasts. The client specifically asked for competitive analysis, regulatory framework, regional prospects studied under the influence of drivers, challenges, opportunities, and pricing in terms of revenue and sales (million units).

Solution

The overall study was executed in three stages, intending to help the client meet its objective of precisely understanding the entire market before deciding on an investment. At first, secondary research was conducted considering political, economic, social, and technological parameters to get a gist of the various aspects of the market. This stage of the study concluded with the derivation of drivers, opportunities, and challenges. It also laid substantial emphasis on understanding and collecting data not only on a global scale but also on the regional and country levels. Data Extraction through Primary Research

The second stage involved primary research in which several market players and automotive parts suppliers were contacted to study their viewpoint concerning the development of their market and production capacity, clientele, and product line. This stage concluded in a brief understanding of the competitive ecosystem and also glanced through the strategies and pricing of the companies profiled.

Market Estimates and Forecast

In the final stage of the study, market forecasts for the electric utility were derived using multiple market engineering approaches. This data helped the client to get an overview of the market and accelerate the process of investment.

Case Study- ICT Sector

Business process outsourcing, being one of the lucrative markets from both supply- and demand- side, has appealed to various companies. One of the prominent corporations based out of Japan approached us with their requirements regarding the scope of the procurement outsourcing market for around 50 countries. Additionally, the client also sought key players operating in the market and their revenue breakdown in terms of region and application.


Business Solution

An exhaustive market study was conducted based on primary and secondary research that involved factors such as labor costs in various countries, skilled and technical labors, manufacturing scenario, and their respective contributions in the global GDP. A comparative study of the market was conducted from both supply- and demand side, with the supply-side comprising of notable companies, such as GEP, Accenture, and others, that provide these services. On the other hand, large manufacturing companies from them demand-side were considered that opt for these services.


Conclusion

The report aided the client in understanding the market trends, including country-level business scenarios, consumer behavior, and trends in 50 countries. The report also provided financial insights of crucial players and detailed market estimations and forecasts till 2033.


CHOOSE LICENSE TYPE
QLOUD
Pricing

Select a license type that suits your business needs

Single User Access

US $4250

Only Four Thousand Two Hundred Fifty US dollar

  • 1 User access
  • 15% Additional Free Customization
  • Free Unlimited post-sale support
  • 100% Service Guarantee until achievement of ROI
Multi User Cost

US $5250

Only Five Thousand Two Hundred Fifty US dollar

  • 5 Users access
  • 25% Additional Free Customization
  • Access Report summaries for Free
  • Guaranteed service
  • Dedicated Account Manager
  • Discount of 20% on next purchase
  • Get personalized market brief from Lead Author
  • Printing of Report permitted
  • Discount of 20% on next purchase
  • 100% Service Guarantee until achievement of ROI
Enterprise User Cost

US $6250

Only Six Thousand Two Hundred Fifty US dollar

  • Unlimited User Access
  • 30% Additional Free Customization
  • Exclusive Previews to latest or upcoming reports
  • Discount of 30% on next purchase
  • 100% Service Guarantee until achievement of ROI